Company: Altele
Created by: isalama
Number of Blossarys: 2
- English (EN)
- Albanian (SQ)
- Chinese, Simplified (ZS)
- Farsi (FA)
- Russian (RU)
- French (FR)
- Arabic (AR)
- Bulgarian (BG)
- Indonesian (ID)
- Japanese (JA)
- Romanian (RO)
Funcţia de partiţie, p (n), numarul de moduri de număr întreg n poate fi scris ca o sumă de numere întregi pozitive. De exemplu, p (4) = 5, deoarece sunt 5 modalitate de a scrie numărul 4 ca o suma de numere întregi: 4 = 1 +1 +1 +1 = 1 +1 +2 = 1 +3 = 2 +2 = 4 funcţia de partiţie creste rapid. Cu unele munci din greu s-ar putea verifica faptul că p (10) = 42. Este un fapt, care nu se poate verifica de mână, că p (100) = 190569292 şi p (1000) = 24,061,467,864,032,622,473,692,149,727,991.
The partition function, p(n), counts the number of ways the integer n can be written as a sum of positive integers. For example, p(4)=5 because there are 5 way to write the number 4 as a sum of whole numbers: 4= 1+1+1+1 = 1+1+2 = 1+3 = 2+2 = 4 The partition function grows rapidly. With some hard work one could check that p(10)=42. It is a fact, which one could not verify by hand, that p(100) = 190,569,292 and p(1000)=24,061,467,864,032,622,473,692,149,727,991.